

NOTE

HIGHLY CONNECTED NON-2-LINKED DIGRAPHS

CARSTEN THOMASSEN

Received February 21, 1989 Revised August 31, 1989

For every natural number k there exists a strongly k-connected digraph which contains two vertices through which there is no directed cycle.

Introduction

Bermond and Lovász [1,4] asked if there exists a natural number k_0 such that every strongly k_0 -connected digraph contains a dicycle (directed cycle) through any two prescribed vertices. The present author made the stronger conjecture [5] that there exists a function f(k) such that every strongly f(k)-connected digraph D is strongly k-linked, i.e. for every 2k-tuple $x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_k$ of distinct vertices in D, there exist k pairwise disjoint dipaths P_1, P_2, \ldots, P_k such that P_i starts in x_i and terminates in y_i , $i = 1, 2, \ldots, k$. (For tournaments, the conjecture was verified in [6]). These and related problems are discussed in [7] (see also [2]). In this paper we show that neither k_0 nor f(2) exist. Moreover, we show that the 2-linkage problem, which was shown to be NP-complete by Fortune et al [3], remains to be NP-complete even for highly connected digraphs. The terminology is the same as in [2].

The construction

We describe a planar digraph G_k as follows: First take k+1 pairwise disjoint dipaths $P_1, P_2, \ldots, P_{k+1}$ where $P_i : v_{1,i}v_{2,i} \ldots v_{m,i}, m = (2k)^i$. For each $i(1 \le i \le k)$ and each $j(1 \le j \le (2k)^i)$ we add the k arcs (directed edges) $v_{q,i+1}v_{j,i}$ where

$$2k(j-1) < q < 2k(j-1) + k$$

and the k arcs $v_{j,i}v_{q,i+1}$ where

$$2k(j-1) + k < q \le 2kj.$$

The resulting digraph G_k can be draw in the plane such that each P_i is a vertical straight line segment with x-coordinate i and such that all arcs are straight line segments directed upwards. Let G'_k be a copy of G_k obtained by reflecting G_k in the y-axis. If $H \subseteq G_k$ we denote the corresponding subgraph of G'_k by H'. For each vertex v in P_1 we add the arcs vv' and v'v to $G_k \cup G'_k$ and denote the resulting digraph by G''_k . We let A denote those vertices of P_{k+1} from which $v_{1,2}$ can be reached by a dipath, and we let B denote those vertices of P_{k+1} that can be reached from $v_{(2k)^2,2}$ by a dipath. Since all arcs of G''_k except those between G'_k and G_k are directed upwards, we conclude that

- (1) G_k'' has no dipath from A to A' or from A' to A or from B to P_{k+1}' or from B' to P_{k+1} or from B to A or from B' to A'.
- It is easy to verify that
- (2) G_k has k disjoint dipaths from A to B.
- (1) combined with the planarity of G''_k imply that,
- (3) if Q_1 is a dipath from A to P'_{k+1} and Q_2 is a dipath from A' to P_{k+1} , then $Q \cap Q_2 \neq \emptyset$.

Theorem 1. For each natural number k, there exists a non-2-linked strongly k-connected digraph D_k .

Proof. We form the disjoint union of G''_k and four strongly k-connected digraphs H_1 , H_2 , H'_1 , H'_2 . Then we add all arcs from S to T and from S' to T' where (S,T) is any of the ordered pairs (H_1, A) , (B, H_2) , (H_2, P_{k+1}) , (P_{k+1}, H_1) .

We first claim that the resulting digraph D_k is strongly k-connected. To see this we let V be a set of less than k vertices and we shall prove that $D_k - V$ is strongly connected. Since H_1 is strongly k-connected, $H_1 - V$ belongs to a strong component D of $D_k - V$. Clearly, D_k has k disjoint dipaths from H_2 to H_1 . Combining this with (2) and the assumption that $H_2 - V$ is strongly connected we conclude that $(H_2 \cup P_{k+1}) - V$ is contained in the strong component D. For each vertex v in $G_k - V$, there is in $G_k - V$ a dipath from v to P_{k+1} and one from P_{k+1} to v. Hence v is in D. So $G_k - V$ is in D. Clearly, D contains some vertex of P_1' . Repeating the above argument we conclude that $D = D_k - V$. Hence D_k is strongly k-connected. Now let $x_1 \in V(H_1)$, $y_1 \in V(H_2)$, $x_2 \in V(H_1)$ and $y_2 \in V(H_2)$. We claim that D_k has no two disjoint dipaths Q_1 , Q_2 such that Q_i starts at x_i and terminates in y_i for i=1,2. Suppose (reductio ad absurdum) that such two Q_1 and Q_2 do exist. Let R_1 be the segment of Q_1 starting in A such that R_1 has only its first vertex in common with $A \cup H_1$. Let Q_1'' be the initial segment of R_1 such that Q_1'' has its last vertex w (and no other vertex) in $P'_{k+1} \cup B$. If $w \in B$, then R_1 contains a segment in G''_k from B to P'_{k+1} , contradicting (1). (We are here using the fact that a dipath from $P_{k+1} \setminus (A \cup B)$ to P'_{k+1} must intersect every dipath from A to B in G''_k). Hence $w \in P'_{k+1}$. In other words, Q''_1 is a dipath in G''_k from A to P'_{k+1} . Similarly, Q_2 contains a segment from A' to P_{k+1} . By (3), $Q_1 \cap Q_2 \neq \emptyset$, a contradiction.

Theorem 2. For each natural number k, there exists a strongly k-connected digraph D'_k containing two vertices x_0 , x'_0 such that D'_k has no dicycle containing x_0 and x'_0 .

Proof. Let D_k be the digraph in Theorem 1. Add x_0 and x'_0 to D_k together with all arcs from x_0 to H_1 , from H_2 to x_0 , from x'_0 to H'_1 and from H'_2 to x'_0 . The resulting digraph D'_k has the desired properties, by Theorem 1.

Theorem 3. For each fixed natural number k, the following problem is NP-complete: Given four vertices x_1 , x_2 , y_1 , y_2 in a k-connected digraph D. Does D contain two disjoint dipaths Q_1 , Q_2 such that Q_i goes from x_i to y_i for i = 1, 2.

Proof. Fortune et al [3] proved Theorem 3 for k=1. We shall reduce the general case to that special case. Consider therefore a digraph D (with no connectivity condition imposed) and with four prescribed vertices x'_1 , x'_2 , y'_1 , y'_2 . Let D_k , x_1 , x_2 , y_1 , y_2 be as in the proof of Theorem 1. In G''_k it is easy to find a dipath Q_0 from A' to B' having precisely one arc uv in common with P_{k+1} . Let v_1 (respectively v_2) be the successor of v on P_{k+1} (respectively Q_0). Let u_1 (respectively u_2) be the predecessor of v on v on

References

- [1] J. C. BERMOND, and L. LOVÁSZ: Problem 3, in: Recent advances in graph theory, Proc. Coll. Prague, Academic Prague (1975), 541.
- [2] J. C. BERMOND, and C. THOMASSEN: Cycles in digraphs a survey, J. Graph Theory 5 (1981), 1-43.
- [3] S. FORTUNE, J. HOPCROFT, and J. WYLLIE: The directed subgraph homeomorphism problem, *Theoret. Comput. Sci.* 10 (1980), 111–121.
- [4] L. Lovász: Problem, in: Proc. 5th British Conf. 1975, Congressus Numerantium XV. Utilitas Math. Publ. (1976), 696.
- [5] C. THOMASSEN: 2-linked graphs, Europ. J. Combinatorics 1 (1980), 371-378.
- [6] C. THOMASSEN: Connectivity in tournaments, in: Graph Theory and Combinatorics (B. Bollobás, ed.). Academic Press (1984), 305-313.
- [7] C. THOMASSEN: Configurations in graphs of large minimum degree, connectivity or chromatic number, in: Proc. 3rd Internat. Conf. on Combinatorial Mathematics, New York 1985, Ann. of the New York Acad. Sci. Vol.555 (1989), 402-412.

Carsten Thomassen

Mathematical Institute
The Technical University of Denmark
Building 303
DK-2800 Lyngby,
Denmark.